Closing the Loop: Fast, Interactive Semi-Supervised Annotation With Queries on Features and Instances
نویسنده
چکیده
This paper describes DUALIST, an active learning annotation paradigm which solicits and learns from labels on both features (e.g., words) and instances (e.g., documents). We present a novel semi-supervised training algorithm developed for this setting, which is (1) fast enough to support real-time interactive speeds, and (2) at least as accurate as preexisting methods for learning with mixed feature and instance labels. Human annotators in user studies were able to produce near-stateof-the-art classifiers—on several corpora in a variety of application domains—with only a few minutes of effort.
منابع مشابه
Interactive Image Annotation with Visual Feedback
A semi-automatic process, which support users in the task of annotating large image data sets, has been proposed recently. Images are clustered automatically according to similarity and are presented to the user as a sorted set. During the annotation process, partial annotations are used for further improvement of the clustering. This interactive annotation process has three important propertie...
متن کاملMEFUASN: A Helpful Method to Extract Features using Analyzing Social Network for Fraud Detection
Fraud detection is one of the ways to cope with damages associated with fraudulent activities that have become common due to the rapid development of the Internet and electronic business. There is a need to propose methods to detect fraud accurately and fast. To achieve to accuracy, fraud detection methods need to consider both kind of features, features based on user level and features based o...
متن کاملA CAD System Framework for the Automatic Diagnosis and Annotation of Histological and Bone Marrow Images
Due to ever increasing of medical images data in the world’s medical centers and recent developments in hardware and technology of medical imaging, necessity of medical data software analysis is needed. Equipping medical science with intelligent tools in diagnosis and treatment of illnesses has resulted in reduction of physicians’ errors and physical and financial damages. In this article we pr...
متن کاملClassification of encrypted traffic for applications based on statistical features
Traffic classification plays an important role in many aspects of network management such as identifying type of the transferred data, detection of malware applications, applying policies to restrict network accesses and so on. Basic methods in this field were using some obvious traffic features like port number and protocol type to classify the traffic type. However, recent changes in applicat...
متن کاملGeneralized Expectation Criteria for Semi-Supervised Learning of Conditional Random Fields
This paper presents a semi-supervised training method for linear-chain conditional random fields that makes use of labeled features rather than labeled instances. This is accomplished by using generalized expectation criteria to express a preference for parameter settings in which the model’s distribution on unlabeled data matches a target distribution. We induce target conditional probability ...
متن کامل